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This paper describes the behaviour of large amplitude, long gravity waves as they 
move over a horizontal bed into a region where the flow is steady but sheared in 
a vertical direction. A new class of exact solutions to the nonlinear hydraulic 
flow equations is derived. These solutions describe progressing waves and are 
sufficiently general to allow both the shape of the free surface a t  any instant and 
the shear profile of the undisturbed flow to be specified. The waves are examples 
of neutrally stable disturbances in the sense that they neither grow nor decay in 
amplitude, although, like simple waves on an unsheared flow, they can break. 

1. Introduction 
The presence of an ambient sheared flow can greatly affect the behaviour of 

gravity waves in the atmosphere and the oceans. Most of the analyses which 
describe these effects are, however, valid only when the governing equations can 
be formally linearized, or when the flow is steady relative to the wave. In  this 
paper we describe the behaviour of a new class of long gravity waves as they 
propagate over a horizontal bed into a region where the flow is steady but 
sheared in a vertical direction. Except for the neglect of real-fluid effects, the only 
approximation used in the analysis is that the waves are so long compared with 
the fluid depth that the momentum equation in the vertical direction can be 
replaced by the hydrostatic pressure law. No restriction is placed on the wave 
amplitudes. 

The equations governing shallow-water (hydraulic) shear flows are derived 
in $2. It can be shown (see Stoker 1957) that, according to these equations, any 
plane bore-less wave advancing into a region where the fluid is at rest ultimately 
becomes a simple wave. If x denotes distance in the direction of travel and 
t denotes time, in any such wave the fluid depth H(x , t )  and the horizontal 
component u(x ,  t )  of fluid velocity satisfy equations of the form 

and 

aH aH 
-+c(H)- at ax = O 

au 
-+ at 

c ( H )  - 8X = 0. 

In  $4  it  is shown that, even when the undisturbed steady flow is sheared in a 
vertical direction, the hydraulic flow equations still have exact solutions for which 
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H(x ,  t )  and u(x ,  y ,  t )  satisfy equations of the form (1.1) and (1.2) even though, 
now, u depends on the vertical distance y. This is the basic result of the paper. 
It is established without restricting the form of the undisturbed shear profile. 

Of course, unlike the situation when there is no shear, it  cannot be argued 
that H and u must ultimately satisfy equations of the form (1.1) and (1.2) in all 
waves which advance into a region where the steady flow is sheared in a vertical 
direction. The waves described are all neutrally stable disturbances: during the 
passage of the wave the total variations in H ,  and in u a t  any fixed height, are 
identical at all horizontal stations x .  The result for H follows from the fact that 
H satisfies (1.1). For u the result follows from the fact that, according to (1.2), 

so that u only depends on (x , t )  through its dependence on H .  However, even 
though u and H remain bounded, the vertical component of fluid velocity, which 
has the form 

2, = (aH/ax) E(H, y), (1.4) 

can grow in amplitude as the free surface steepens. 
The equations governing Z(H,  y ) ,  %(H,  y) and c ( H )  are discussed in $4. The 

boundary conditions for these equations only involve the function which describes 
the ambient shear profile. The condition at the free surface is universal and is 
independent of its current shape. This shape can be specified arbitrarily a t  some 
fixed time and then calculated from (1.1) at all subsequent times. Since the equa- 
tions which govern Z, V and c integrate to give the classical Riemann relations 
when there is no shear, they are called ‘the generalized Riemann equations’. 

The waves described by our analysis are of two distinct types depending on 
whether or not the flows they generate contain critical curves along which u = c. 
Those which do are more difficult to analyse. They will be discussed in a subse- 
quent paper. Here, in the first paper, we restrict attention to waves which do not 
generate critical curves. Then, ultimately, any wave of finite length, which leaves 
the depth H unchanged after its passage, either overtakes all particles ahead or is 
overtaken by all particles from behind. The steady shear flows ahead and behind 
are identical. 

In  0 6 it is shown that the generalized Riemann equations imply that the varia- 
tions of u with H for any particle satisfies the simple equation 

[U - c(H)]  du/dH + g = 0. (1.5) 

The initial condition for this equation involves the value of u at which the particle 
enters the wave. This is known in terms of the steady shear flow ahead of or behind 
the wave. Once the variation of u with H for every particle is known all the other 
flow variables can be calculated. Unfortunately, however, (1.5) involves the wave 
speed c ( H ) .  This function is not known a priori but must be determined at any H 
by an integral constraint on u over all particles which are currently a t  the cross- 
section where the depth is H .  The whole problem of describing the interaction 
of a long wave with an ambient shear flow reduces to solving this mathematical 
problem. 
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In  $ 7  it  is shown that this problem can easily be solved for small amplitude 
waves. For, when H differs little from its ambient value H,, u and c can be repre- 
sented by a regular power-series expansion in H/H,- 1. The first term in this 
expansion, with c (H)  replaced by c, = c(H,), yields the linear theory established 
by Burns (1953). 

As an example of the interaction of a large amplitude wave with a shear flow, 
in § 5 we consider the special case when the undisturbed flow has constant vorticity. 
Then, the generalized Riemann equations can be integrated and a full account of 
the interaction can be given. Details of this interaction are computed when the 
wave is generated by a discontinuous drop in H a t  x = 0. 

2. Hydraulic shear flows 
In  this paper we describe the behaviour of a class of large amplitude, long 

gravity waves as they propagate over a horizontal bed into a region where the 
flow is steady but sheared in the vertical direction. The transmitting fluid is 
incompressible and has a uniform density. If x denotes horizontal distance 
in the direction of wave propagation and y denotes vertical distance then, with 
the conventional interpretation for the symbols, the continuity and momentum 
equations which govern the flows generated by the waves are 

au av 
ax ay 
-+- = 0, 

au au au l a p  
at ax ay pax 
-+u-+v-+-- = 0 

and apjay+pg = 0. (2.3) 

The use of the hydrostatic pressure law (2.3), which replaces the momentum 
equation in the vertical direction, is crucial in establishing the results reported 
in this paper. However, except for the neglect of real-fluid effects, it  is the only 
approxima tion used. 

The flow direction need not coincide with the direction of wave propagation. 
Once u(x ,  y ,  t )  and v(x, y ,  t )  have been determined the horizontal component of 
fluid velocity transverse to the wave, uT(x ,  y ,  t ) ,  is determined from the con- 
dition 

The flow region is bounded from below by the horizontal bed y = 0 and from 
above by the free surface y = H ( z ,  t) .  On this free surface the pressure is constant, 
equal to p ,  say, and consequently (2.3) integrates to give 

P = Po+Pg(H-Y). (2.5) 

When this expression for p is inserted, (2 .2)  becomes 

au au au aH 
-+u-+v-+g- = 0. at ax ay ax (2.6) 

16-2 
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Equations (2.1) and (2.6) should be regarded as two equations for the unknowns 
u(z, y ,  t )  and v(x, y ,  t ) .  The function H ( x ,  t )  must be determined so that the bound- 

(2.7) 
ary conditions v = O  on y = O  

and 
aH aH 

v=-+u-  on y = H ( x , t )  at ax 
are satisfied. 

2.1. The  sigma variables 

In  order to simplify the algebra it is convenient to work with the independent 
variable 

= y / H ( x ,  t )  (2.9) 

rather than y ,  and with the dependent variable 

(2.10) 

rather than w. In terms of these variables (2.1) and (2.6) become, after some 
algebra, 

and 

--l-u-+H -+- = o  aH aH 
at ax (:: 2) 
au au au aH 
-+u-+w-+g- = 0. 
at ax a x  ax 

(2.11) 

(2.12) 

The boundary conditions (2.7) and (2.8) simplify considerably. Using the defini- 
tions (2.9) and (2.10) they become 

w = O  on z = O , l .  (2.13) 

Variables similar to z and w are often used in meteorology (see Phillips 1957), 
where they are called ‘sigma variables’. 

3. Progressing waves on unsheared flow 
When the flow is not sheared in the vertical direction 

Then, the only way to satisfy (2.11), (2.12) and the boundary conditions (2.13) is 
to take 

w E 0. (3.2) 

Consequently, u(x ,  t )  and H ( x ,  t )  satisfy the classical shallow-water equations 
(see Stoker 1957) 

(3.3) 

and 
au au a~ 
-+u-+g- = 0. 
at ax ax (3.4) 
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Once u and H have been determined from (3.3) and (3.4), it follows from (2.10) 
and (3.2) that 

(3.5) 

while for any particle z = y/H = constant. (3.6) 

The solutions to (3.3) and (3.4) which describe bore-less waves propagating 
into a region of uniform flow are well known (Stoker 1957). Such waves are 
always simple waves in which Hand u = U(H) satisfy the one-dimensional wave 
equations 

and 

aH aH 
-++(H)- = 0 ax at 

au au 
ax at 

-+c(H)- = 0. 

(3.7) 

The wave speed c(H) and U(H) are determined from the Riemann equations 

HdU/dH+(U-c) = 0 (3.9) 
and (U-c)dU/dH+g = 0. (3.10) 

These follow from (3.3) and (3.4) when the relations (3.7) and (3.8) are used. If 

u = u, when H = H, (3.11) 

(3.9) and (3.10) integrate, subject to conditions (3.11), to give 

u = u, + 2(gH0)4 [(H/H,)* - 11 (3.12) 

and C = UO + (gHo)t [3(H/Ho)$ - 21. (3.13) 

4. Progressing waves on a sheared flow 
The main purpose ofthis paper is to show that, even when the flow is sheared in 

the vertical direction, (2.11)-(2.13) also have solutions which describe finite 
amplitude progressing waves for which H(x, t )  and U(X, z, t )  still satisfy the one- 
dimensional wave equations (3.7) and (3.8). For these solutions, however, c(H) is 
not given by the simple formula (3.13) and w is not identically zero. In  fact w has 
the form 

w = (aH/ax) W(H,z), (4.1) 

u = U(H,z) .  (4.2) 

while u, because it satisfies (3.8), has the form 

To determine the equations whichgovern U(H, z) ,  W(H, z )  and c(H) note that, 
if (3.7), (4.1) and (4.2) are used, (2.11) implies that 

aH 
( -c+U)-+H ax 

a ( m + ~ ) + ( u - c )  au aw = 0. 

(4.3) 

or (4.4) 
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au 2u 
( U - c ) - + w - + g = o .  aH 2z (4.5) 

Equations (4.4) and (4.5) should be regarded as two equations for U ( H ,  z )  and 
W ( H ,  z ) .  The wave speed c ( H )  must be determined such that the boundary con- 
ditions (2.13), which require that 

W ( H ,  0) = W ( H ,  1) = 0, (4.6) 

are also satisfied. When there is no shear, W = 0 and equations (4.4) and (4.5) 
reduce to the Riemann equations (3.9) and (3.10). Therefore, in what follows 
(4.4)-(4.6) are called the generalized Riemann equations (G.R.E.). 

4.1. Xuppkementary conditions 

Waves of the type described by (3.7), (3.8) and (4.1)-(4.6) can exist adjacent to 
steady flows which are sheared in the vertical, but not in a horizontal, direction. 
The simplest situation to imagine is that of a wave, of constant width h (9 H ) ,  
separating two semi-infinite flow regions in which H = H,, u = uo(y/Ho) and 
uT = u,,,(y/H0). Then, in addition to the boundary conditions (4.6), equations 
(4.4) and (4.5) must be solved subject to the condition that 

U = u,(z) when H = H,. (4.7) 

Conditions (4.6) and (4.7) are not, by themselves, always sufficient to deter- 
mine a solution to (4.4) and (4.5). To see this note that (4.5) is a first-order quasi- 
linear equation for U ( H ,  z )  with characteristic curves along which 

DU Dz W 
DH = c c ’  DH 

( U - C ) - + g =  0. 

According to the theory of such equations, if HJf and H, denote the maximum and 
minimum values of H in the wave, U must be specified a t  some point on each 
characteristic curve which lies in the region 

0 Q 2 Q 1, H,,, < H < (4.9) 

Consequently, the specification (4.7) is only sufficient if all such characteristic 
curves also intersect the curve H = H,. The physical meaning of this condition is 
apparent once it is noted that the characteristic curves are no more than the 
images of particle paths. For a t  any particle 

DH 2H aH aH 
-= -+u- = ( U - c ) -  
Dt at ax ax (4.10) 

by (3.7), while DzlDt = w = WaH/ax (4.11) 

by (2.10) and (4.1), so that for any particle, 

Dz/DH = W / ( U - c ) .  (4.12) 

Consequently, condition (4.7) is sufficient if all particles in the wave cross a 
horizontal station where H = H, at some time. This occurs if the flow generated 
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by the wave remains wholly subcritical with U < c, or wholly supercritical with 
U > c. For subcritical flows all particles in the wave have been in the steady 
shear flow ahead of the wave at some previous time, for supercritical flows all 
particles have been in the steady shear flow behind the wave a t  some previous 
time. If the flow contains both subcritical and supercritical regions then the wave 
contains trapped particles which are convected with the wave. These particles 
need never reach a horizontal station where H = H, (the corresponding charac- 
teristic curves do not intersect the curve H = H,), so that in addition to condition 
(4.7) some other information on U must also be specified. In  this first paper, only 
flows which do not contain critical curves along which U = c are discussed. Flows 
with critical curves will be discussed in subsequent papers. 

Of course, unlike the situation when uo s constant, it cannot be argued that all 
progressing waves moving into a region where the flow is steady but sheared in the 
vertical direction are of the type described above. The precise conditions which 
produce these waves are not understood. However, they can readily be classified 
by their common properties. 

The most important property is that the waves are neutrally stable in the 
sense that the maximum and minimum values of H and u in the wave at any 
time are equal to their values at  t = 0. This property for H follows directly from 
the fact that H ( x ,  t )  satisfies (3.7). For u it  follows from the fact that u only depends 
on (x , t )  through its dependence on H .  Although 1.1 and H cannot grow as the 
wave propagates, 1.1 and IwI can become infinite. This occurs when the wave 
profile distorts so much that the factor aH/ax in (4.1) becomes infinite. 

Another important property is that the interaction between the wave and the 
ambient shear flow is only local. When H returns to H, after the passage of the 
wave, the shear profile returns to the form it had before the arrival of the wave. 

5. Formula for c(H) in terms of U(H, 2) :  front speed 
If aU/aH is eliminatedfrom (4.4) and (4.5) the resulting equation can bewritten 

as 

which integrates, subject to the condition that W = 0 when z = 0, to give 

Since W = 0 again at z = 1, and since we are only dealing with flows for which 
U + c, equation ( 5 . 2 )  implies that c (H)  must be determined from U(H,z )  by 

the implicit relation 1 dz 

In  particular, the speed of the front, c, = c(H,), must be determined from the 

gHJ* (u_c)2 = l -  (5.3) 

relation dz 
gHo ~ o l ( u o ( z ) - c o ) ~  = 1, (5.4) 

which is identical to that obtained for small amplitude waves by Burns (1953) 
and by Freeman & Johnson (1970). 
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6. Simplification of the G.R.E. 
The G.R.E. can be greatly simplified if a slight change of variables is made. 

As new independent variables we use ( H ,  $), rather than ( H ,  z ) ,  where the para- 
meter @ is constant for all particles which outside the wave move horizontally a t  
a height 

(6.1) y = H,z = Ho$. 

As dependent variables, rather than c, U and W ,  we use c, U and z. 

(4.8), which can be written as 
The equation satisfied by u = u ( H ,  $) [ = U ( H ,  z) ]  follows immediately from 

(6.2) (u - c )  aqaH + 9 = 0. 

According to (4.7) and (6.1) this must be solved subject to the initial condition 
that 

u =  u,($) at H = Ho. (6.3) 

The equation satisfied by z(H,$)  is obtained by eliminating W from (4.12) 
and (5.1) to yield an equation which can be written as 

When this is compared with the equation 

which is obtained by first dividing (6.2) by u - c  and then differentiating with 
respect to $, it  follows that 

This integrates, subject to conditions (6.1) and (6.3), to give 

which is a special case of the more general condition that in hydraulic Aows w 
is invariant for a particle. When (6.7) is integrated, subject to the condition that 
z = 0 when $ = 0, it yields 

In  particular, since z = 1 when $ = 1 equation (6.8) implies that 

(6.9) 

Once u,($) has been specified, conditions (6.2) and (6.9) furnish two equations 
for the determination of c (H)  and u(H,$) .  Once u has been determined, (6.8) 
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yields y ( H ,  +). Since (2.4), which governs the component of fluid velocity trans- 
verse to the wave, implies that 

au,/aH = 0, uIT = uTO($). (6.10) 

Finally, for completeness, (2.10), (4.1) and (4.8) imply that 

(6.11) 

One of the most significant properties of the large amplitude waves which are 
described above is that they produce flows in which u, (aH/ax)-I v, $ and p can be 
calculated as functions of H and y without knowing how H varies with x and t .  
This means, for example, that the variation in vertical height of any particle 
can be calculated as a function of H ,  the current depth, without knowing how 
H varies with x and t. It also means that a t  any fixed x and t the shear profile, 
that is the variation ofuwith y, can be determined once the parameter H is known. 

7. Small amplitude waves 
To obtain some idea of the nature of the flows which are described by the 

previous analysis we consider the limiting case when H differs little from its 
ambient value H,. More precisely, if we define the reference velocity 

which is non-zero because the flows we consider contain no critical layers, and if 
we define the Proude number 

we consider flows for which 
= Q~Ol (gH0)~  (7.2) 

(7.3) JH/H,-lI << F2 < 1. 

The condition that P2 < I follows from formula (5.4) and the definitions (7.1) 
and (7.2). These imply that 

which, because of condition (7.1), is less than or equal to one. 
It is convenient to measure all velocities in units of a, and to take $ and 

h = P-'(H/HO- I) (7.5) 

as the basic independent variables. In  terms of these variables (6.2) and (6.9) read 

and 

au 
( u - c ) - + I  = 0 

ah 

These equations are to be solved subject to the conditions that 

(7.7) 

c = c,, u = uo(+) when h = 0.  (7.8) 
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When condition (7.3) holds, so that 
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Ihl < 1, (7.9) 

the solutions to (7.6) and (7.7) which satisfy conditions (7.8) can be expanded in 
power series in h. When the expansions 

and 
m 

n=l 
c = c,+ xCnhn 

(7.10) 

(7.11) 

are inserted in (7.10) and (7.11) it  can readily be shown that urn($) is a polynomial 
of degree 2n- I in the variable 

&4 = CUO(34 - c0l-l- (7.12) 

Note that, because in the measurement scale adopted a, = I, 
Is($)I 6 1. (7.13) 

The coefficients in the polynomial expressions for the un($) are given in terms of 
the constants c,, which are themselves determined from condition (7.7) in 
terms of integral powers of s($) over the full range of $. The algorithm for deter- 
mining these constants is a marching process. First u1 is determined, then c l ;  then 
the third-degree polynomial us, then cz; and so on. In particular, 

Ul = -8, c1 = -2Jo 3 1  s4d$/J01s3a$ 
(7.14) 

(7.15) u - -183-1C 82 while 2 -  2 2 1  

When the expansion (7.10), with u1 and u2given by equations (7.14) and (7.15), 
is inserted, (6.8) yields the expression 

(7.17) 

for y(h, $). If (7.17) is used to determine $as a function of y and h, the expansion 
for u can also be written as 

The coefficient of h in (7.18) is identical with that obtained by Freeman & Johnson 
(1970). They formally linearized the governing equations and looked for solutions 

(7.19) 
of the form 

To the same order of approximation (6.11) and (7.17) imply that the vertical 
component of fluid velocity 

fl = (ah/ax)P(Y), (7.20) 

u-u , (~ )  = h(x-c,t)q(Tj). 

where 

satisfies the low frequency (zero wavenumber) Rayleigh equation 

(7.21) 

(uo-co)ps-u~p = 0. (7.22) 
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8. Interaction of a large amplitude progressing wave with a linear 
shear flow 

As a simple example of the interaction of a large amplitude wave with a shear 
flow we consider the special case when ahead of the wave 

u = WY = wH,@ ( U O ( @ ) ) .  

Then, (5.4) implies that 

co = 4 wHO[l + sgn w( 1 + 4g/w2Ho)i] ( 3 0). (8.2) 

Since co - uo > 0 for both positive and negative w ,  the flow ahead of the wave is 
wholly subcritical. 

When uo = wHo@, equations (6.2) and (6.9) simplify considerably. Equation 
(6.9) immediately integrates to give the relation 

Also, since uA and u, denote the variations of u for the two distinct particles 
@ = 1 and @ = 0 they both satisfy (6.2). Accordingly, 

(uA - C) du,/dH + g = 0 ( 8 . 5 )  

and (UB - C) dUB/dH + g = 0. (8.6) 

Equations (8.3), (8.5) and (8.6) are three equations governing the variations of 
ug, U ,  and c as functions of H .  They must be solved subject to the initial con- 
ditions that 

c = co, u, = 0, u, = wHo when H = Ho. (8-7) 

u = wy+uB(H). (8.8) 

Once uB(H)  has been determined, (6.8) implies that 

When the expression (8.1) for uo and the expression (8.8) for u are used, (6.11) 
imdies that 

(8.9) 

Equations (8.3), (8.5) and (8.6) can readily be solved. In  terms of the variable 

sinh 8 = &(H/g)*, (8.10) 

8, which is defined by the condition that 

the solutions can be written as 

(w/g)[[uA-c(0)] = 28+e2e-1, (w/g)[u,-c(O)] = 28+1-e-2e, (8.11) 

and (w /g )  [ c -c (O) ]  = 2(8+sinh28). (8.12) 

In terms of O0, which is defined by the condition that 

sinh8, = &o(Ho/g)*, (8.13) 

(w/g)  co = ewo - I,  (w /g )  c(O) = e-200 - 1 - 28,. (8.14) 
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FIGURE 1. Variations in (w/g)  [ u ~ - c ( O ) ] ,  (w/g)  [ u ~ - c ( O ) ]  and (w/g)  [ c - c ( O ) ]  
as functions of ( w 2 / g ) H .  

In equations (8.10)-(8.14), 
sgn 6' = sgn w .  (8.15) 

The variations of (w/g)  [uA- ~ ( o ) ,  U ,  - ~ ( o ) ,  c - c(O)] with ( 0 2 / g )  H ,  which are 
described by (8.10)-(8.12)) are depicted in figure 1. Note that since 

(8.16) 

and du,/dH = w(e2* - l)-l) I 
c, uA and U ,  increase as H increases. 

The classical Riemann relations (3.12) and (3.13) can be obtained from the 
relations (8.10)-(8.14) in the limit as w -+ 0 but H remains finite. In this limit 
8,8, --f 0 while, according to (8.10)) (8.13) and (8.14), 

-+ +(H/g)*, o0/w -+ i(Ho/g)i) C ( O )  + - Z ( ~ H , ) * .  (8.17) 

When these results are used, (8.11) and (8.12) predict that 

(8.18) 

To calculate the variation in height y of a particle as a function of H ,  note that 
for a particle 

(8.19) 

(8.20) 
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I I I I I 

FIGURE 2. Variations in (02/g) y for different particles as functions of (oz/g) H .  The broken 
rays denote the variations of y with H for the limiting case of no shear. 

by (8.8), so that -- DY 9Y 
B H  - (uB-c) (wy+uB-c) '  

In terms of z = y/H and O condition (8.22) reads 

Dz 42(2 - I )  _ -  
DO - l+(l-Zz)tanhO' 

When w = 0, for a particle 

z = y /H = constant = z,,, say. 

(8.21) 

(8.22) 

(8.23) 

Figure 2 depicts the variations of (w2/g)  y with (w2/g)  H for several particles. 
As (wZ/g)H --f 0 (0 -+ 0 )  these trajectories asymptote to those given by (8.23), 
which are depicted by broken rays in figure 2 .  Note that as (w2/g) H -+ 00 all 
particles move horizontally. 

8.1. Particle paths in a centred expansion wave 

As an illustration of the actual particle motions which can occur in the flows 
described in this section, we calculate the trajectories of particles on the free sur- 
face during the passage of a centred expansion wave. 

In an expansion wave which is centred a t  x = 0 a t  t = 0, H(x ,  t ) ,  which satisfies 
(3.7), is determined from the condition 

x = c (H)  t ,  SO that aH/ax = [t ~'(I2)l-l. (8.24) 

When the expression (8.24) for aH/ax is used, (8.20) implies that at the free sur- 

(8.25) 
face, where DH uH+uB-c 

c ' (H) - 
Y = H ,  t - =  

Dt 



254 P. A .  Blythe, Y .  Kazalcia and E. Varley 
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I f  
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4 x 0  

FIGURE 3. Particle trajectories in a linear shear flow before and after they are overtaken by 
a wave centred at  x = 0. - --, particle trajectories in an unsheared flow which has the same 
undisturbed depth andmean velocity. 

Once the variation of H with t for a particle on the free surface has been calculated 
from the last of equations (8.25), the variation of y with t follows from the first 
of these equations, and the variation of x with t from (8.24). In  terms of a = e20, 

equation (8.25) integrates to give 

(8.26) 

and to denotes the time at which the particle is traversed by the front of the wave 
for which a = go. In  terms of a, according to (8.10) 

(w”g, y = (g- 1)2/a, (8.27) 

while, according to (8.24), (8.12) and (8.14), 

-=[- wx 1-a. 

gto C O  
(8.28) 

I n  terms of the parameter go, the Froude number of the undisturbed shear flow 
(based on the mean speed) is 

F = &lwlHo/(gH0)& = &\ao- lla;4. 
In  (8.26)-(8.29), 

(8.29) 

1 < a< a. when w > 0; 0 < a. < a < 1 when w < 0. (8.30) 

The trajectory of a particle on the free surface is shown in figure 3 for the special 
case when F = 8. For comparison, the trajectory of a particle on the free surface 
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of an unsheared flow which has the same ambient Froude number F is also depic- 
ted. The equation of this trajectory can be written as 

(8.31) 

where xo denotes the station at which the particle is overtaken by the front of 
the centred wave. Equation (8.31) can be obtained from (8.27) and (8.28) as 

((4 g, flo) -+ 0. 

Figure 3 also depicts the trajectories of particles which are not on the free surface 
when they are overtaken by the wave. Each particle is identified by the value of 
y/H = zo, say, when it was overtaken by the wave. The portions of these trajec- 
tories which are actually traversed depend on the amplitude of the wave. Typical 
portions which correspond to a centred wave taking the flow from the depth 
Ho t o  a depth H, < Ha are marked. Thereafter, if the flow is maintained a t  a 
constant depth H,, the particles move horizontally. 

The results presented in this paper were obtained in the course of research spon- 
sored in part by the Department of Defense Project THEMIS under Contract 
no. DUD-5-69-C-0053 monitored by the Ballistics Research Laboratories, 
Aberdeen Proving Ground, Md. and in part by the National Science Foundation 
under grant GP- 34 - 74 0. 

REFERENCES 

BURNS, J. C. 1953 Proc. Camb. Phil. Soe. 49, 695-706. 
FREEMAN, N. C. & JOHNSON, R. S. 1970 J .  Fluid Meek 42, 401-409. 
PHILLIPS, W. A. 1957 J .  Meteorology, 14, 184-185. 
STOKER, J .  J. 1957 Water Waves- The Mathematical Theory with Applications. Inter- 

science. 




